翻訳と辞書 |
Integral representation theorem for classical Wiener space : ウィキペディア英語版 | Integral representation theorem for classical Wiener space In mathematics, the integral representation theorem for classical Wiener space is a result in the fields of measure theory and stochastic analysis. Essentially, it shows how to decompose a function on classical Wiener space into the sum of its expected value and an Itō integral. ==Statement of the theorem==
Let (or simply for short) be classical Wiener space with classical Wiener measure . If , then there exists a unique Itō integrable process (i.e. in , where is canonical Brownian motion) such that : for -almost all . In the above, * is the expected value of ; and * the integral is an Itō integral. The proof of the integral representation theorem requires the Clark-Ocone theorem from the Malliavin calculus.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Integral representation theorem for classical Wiener space」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|